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Abstract

The hemicube estimates of form factors are based on a finite set of sample directions.
We obtain several optimal arrangements of sample directions, which minimize the vari-
ance of these estimates. They are based on changing the size or shape of the pixels or the
shape of the hemicube, or using non-uniform pixel grids. The best reduces the variance by

43%.

The variance calculation is based on the assumption that the errors in the estimate are
caused by the projections of single polygon edges, and that the positions and orientations
of these edges are random. This replaces the infinite dimensional space of possible envi-
ronments by the two dimensional space of great circles on the unit sphere, making the

numerical variance minimization possible.
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Introduction

Radiosity algorithms for global illumination, either “gathering” [1,2] or “shooting” [3]
versions, depend on the calculation of form factors. It is possible to calculate the form fac-
tors analytically [1,4,5,6,7], but this is difficult when occlusion is involved, so sampling
methods are usually preferred. The necessary visibility information can be obtained by ray
tracing in the sampled directions. However, area coherence makes it more efficient to
project and scan-convert the scene onto a number of planes, for example, the faces of a

hemicube[2]. The hemicube faces have traditionally been divided into equal square pixels,
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but more general subdivisions are practical, and can reduce the variance of the form factor

estimates.

Sillion and Puech [8] used a single horizontal plane instead of a hemicube, and sug-
gested distributing the samples more densely in directions near the surface normal, in
order “to obtain regions with equal contributions to the form factor”. Restlkar [9] also
try to do this in a progressive radiosity context by using a higher resolution central region
on the single plane, and later shooting from the missed vertical sides of a short, wide

hemicube.

The main innovation here is a quantification of the effect of the distribution of sample
directions, which produces an optimization condition somewhat different than the “equal
contribution” one quoted above, due to area coherence effects. Optimization results in
several “recipes” for distributing the sample directions on the hemicube. The recipes are
resolution-independent. Given the numBeof hemicube pixel samples desired, the rec-
ipe produces an arrangement of close to, but no moreKhsaamples. The recipes were
tested on random input, and shown to be superior to one optimized for “equal contribu-

tions to the form factor”.

The optimization uses no knowledge about the specific input geometry, and instead
attempts to reduce the expected variance in the form factors for random input scenes. Thus
the recipes are not adaptive. They are fixed, independent of the input, and amenable to

hardware speedups.

Adaptive sampling is appropriate for ray tracing, since rays can be independently posi-
tioned at no extra cost. However a hemicube z-buffer algorithm taking advantage of area
coherence during scan conversion requires a fixed sampling pattern. The patterns pro-

posed here can all use efficient hardware or software scan conversion. The best uniform



grid approach, compatible with current hardware, is predicted to reduce the variance by
31%, compared with the standard hemicube. A non-uniform grid based on cubic polyno-
mials is predicted to reduce the variance by 43%, but requires either software scan conver-
sion or revised hardware microcode to perform an extra table lookup and multiplication

per pixel.

Since the optimization assumes random inputs, we must understand the probability
distribution on the space of scene geometries. With no limit on scene complexity, this
space is infinite dimensional, so simplifications are required. The key simplifying idea
here is that when surfaces are broken up into polygonal patches, and hemicubes are
rotated randomly about the surface normals to reduce form factor aliasing [10], the rela-
tionship of the patch edges to the hemicube becomes random. Random edges in 3D
project to random great circles on the unit sphéref possible sample directions. The
principal errors in the form factor estimates can be directly related to the positions of these
great circles. This reduces the distribution of scene geometries to the much simpler two-
parameter distribution of random great circledgmand makes the mathematical analysis

practical.

Form Factor Estimates

We briefly define form factors and describe hemicubes below, and then proceed to ana-
lyze the errors inherent in hemicube sampling, and how to minimize them. (Readers who

require motivation to traverse the mathematics should skip to the results section first.)

To obtain the form factoF A-A between a finite afp@and a differential aredA,

one needs to calculate an integral [4],

coso, cosej
Fap-a = IV(dA, dﬁ)TdPy (1)



whereV(dA,dA) is 1 if the differential aredA is visible fromdA;, and O otherwise, is
the length of the raR from dA to dA, 6; is the angle between the &yand the normal to

dA;, ands; is the angle betweedR and the normal tdA. This integral is equivalent to

FdA—Aj = %HEV' (W, Aj) cost (w) dw 2)

whereH is the hemisphere of unit direction vectassabovedA, dw is the differential

solid angle on this hemisphere, an@) is the angle between the directimrand the nor-
mal todA; the same a6; in (1), andV'(w,A) is 1 if the surface visible frorA; in the
directionw is Aj, and is 0 otherwise. The integral (2) can be calculated analytically, using

exact visibility algorithms [4,5]. However it is usually estimated as a Riemann sum, by

dividing the hemispher into a number of disjoint regior® of solid angleAw:

I — 1 T
F dA-A = EZV (0, Aj) cosa (w,) Aw, (3)

wherew, is a sample direction insid®,, usually at its center. A slightly more accurate

estimate is the weighted sum

Fon-n = ZV' (W A) W, (4)
where

W, = 7—1T£ cost (w) dw.

k

The estimate (4) will be correct if the set whet@w, A) = 1 aligns exactly with a collec-

tion of the region&y, while (3) may still be in error.

In the hemicube algorithm of Cohen and Greenberg [2], the reBjoase the projec-

tions onto the unit hemisphekkof square pixels (also calléy} below) on the faces of a



half of a cubeC surroundingH, and the weight®\j correspond to the/X form factors”.
By scan converting the projections of all surfadgento the faces of, using a Z-buffer
or another standard visibility algorithm, an “item buffBrtan be prepared, such tiBgk)

=j ifand only if V'(wy , ) = 1. TheF" , _, can then easily be obtained from the item
]

dA
buffer as

Flan-a = B(g:jwk (5)

Ray tracing algorithms [6] for calculating form factors can also be put into this frame-
work by taking thew, to be the sample ray directions, d@Rgdto be the subset of the unit

sphere containing those directions closer to samptban to any other sample direction.

Obviously, the accuracy of the estimate (4) depends on the number of sappled
their arrangement on the hemisphklreFor a given numbéef of samples, our goal is to
find the best arrangement. Special attention will be paid to arrangements compatible with
hardware rendering engines, or with software scan conversion algorithms that take advan-

tage of object coherence.

Error Statistics

The difference between the integral (2) and its estimate as the sum (4) is the error

D = deﬁ_Aj—F"dAﬁ_Aj = %_l!{V'(oo, A) —V' (0 (@), A)} cosa (w)dw  (6)

wherewy(w) is the sample ray corresponding to the reftpnontaining the directiom.

Any sampling method of estimating an integral like (2) is subject to error. The esti-
mate (4) comes from assuming that the polygon visible at the sampleyasnactually

visible inside the whole regioR,. Thus it puts a jagged staircase edge following the



hemicube pixel boundaries in place of the actual boundary edges of the visible regions,

causing aliasing.

Note that at this stage in a radiosity algorithm, our goal is not to reconstruct an image
of the scene from the point of view of the hemicube center. All we need is an accurate esti-
mate of the form factoIFOIA A If a protrusion in a visible region making the estimate too
large is compensated by a nearby intrusion making it a compensating amount too small,
the estimate will still be correct. Since this cancellation does happen on average, our esti-
mate (4) is unbiased: if we repeat the calculation many times with randomly rotated

hemicubes, the average will approach the correct integral (2).

For hemicube rotation by a random argjléhe expected value of a quantitgepend-

ing onB is

E, (h) = ZiTJz"h(e) do.

The fact thatF”dA_Aj is unbiased meakg (D) = FdA—Aj_EG(F"dA—Aj) =0 .In
spite of this, any one calculation will likely be in error. A measure of the range of this error

is the variance of" A—A which is the expectation of its squared deviation from its
]

LI 2L . -
expected value, OEGE(F"dA—Aj_EO(F"dA—Aj))ZE = EGDDZD . Our goal is to mini-

mize this variance, and thus reduce as much as possible the errors caused by aliasing.

Many variance reduction techniques have been suggested for ray tracing, such as
adaptive supersampling (Whitted [11]) and stratified sampling €éLaé [12]). However
our goal is a non-adaptive method suitable for hardware scan conversion into a z-buffer.
This offers a tremendous speedup from the area coherence in the scan conversion. In addi-

tion, a single scan through the item buffer can produce an estimate (5) for all pgssible



Suppose the regiond are totally and randomly spread out, as in a Jackson Pollack
spatter painting, with paint drops smaller than the hemicube grid spacing; eode-
sponding to the union of all spots of cololhen the only way to estimate the integral (2)
is by Monte Carlo sampling. The samples are uncorrelated, and the all have the same
probability p; of hitting a spot of coloy. The visibility functionV'(w,A) also has the same
variancev; = p; - pjz at every sampley, and a simple analysis shows that samples are

taken, the variance of their mean visibilityjg n = on™).

In our case, however, the regions being sampled are polygons, which means that
nearby samples are correlated. | will show below that a regular pattern of samples can take
advantage of this fact, and produce a variance of order/€)( which is a significant

improvement over random sampling.

Another method for numerically estimating the integral (2) is Gauss integration. (See
Burnet [13], Zatz [14].) The integrand is evaluated at a number of specially placed Gauss
points alongA;, and the estimate is a weighted sum of the results. The Gauss points and
their weights are chosen to integrate exactly polynomials of up to a certain maximum
degree. The method thus works well on smooth functions that are approximated well by
polynomials. However the visibility functioi(dA;, A)) changes discontinuously at occlu-
sion edges that hide parts Affrom dA, so Gauss integration cannot be expected to be

accurate. For similar reasons Simpson’s rule is not useful.

Calculation of variance

To computeEe(Dz) we start by rewritind® as a sunD = ZDK where

Then



Eq(D?) = ZZDK' (8)

where the “error correlationD,, = E4(D,D,)

Instead of being fixed, suppose that a polygonal input scene is chosen from a distribu-
tion of possible inputs. Suppose thgtis selected randomly from the patches in this
scene, thatlA is chosen randomly from among the surface points at which form factors
are required, and, as above, that the hemicube is rotated randomly about the rb§nal to
Together these choices define a probability distributigron the spacé& of possible

geometry affecting the form factér, and its estinfatg A—A
J

A=A

If his a function of geometny, we will useE(h) without the subscripgd to denote the

expected value

E(h) =J;'h(9)d9-

Now E(D?) is the expected variance for an arbitrary form factor for a geome®yand

this is what we will try to minimize.

Consider the visible projectioR(A;)) of A on the hemispherei, i.e., P (Aﬁ) =
{0 |V (w, Aj) = 1} . Inthe case of polygonal inptR(A)) is bounded by projections of
straight line polygon edges, or projections of straight lines in which two polygons inter-
sect. Note thabD, in (7) is zero unlesB, is crossed by one of these boundary edges. For
random geometrie®); becomes smaller and smaller as the regim@sdR, grow farther
apart, because it becomes less and less likely that both regions will be crossed by a bound-
ary edge. For fixe®, and fixeddr, the number of region sampleswhose distance tw,
is betweerr andr + dr increases linearly with so many small termi3, for distant pairs

of regions might still contribute substantially to the sum (8)5(@2). However, detailed



analysis like that in the following sections shows thatiasreases, the positive and neg-
ative contributions to the integral ov@rfor Dy, from edges of varying position and ori-
entation, cancel so as to méBg decrease rapidly enough that only neighboring regions
R, andR, contribute significantly tcE(Dz). Therefore we are only interested in g for

neighboring regions.

In addition,R,andR, should be small compared to the siz&@), or the estimate (4)
will have a large relative error. The calculations below are for the limiting case where the
hemicube subdivision is fine compared to the projected size of the polygons. Under these
conditions it is reasonable to make our “first basic assumption”, that at most a single edge
L of P(A)) crossesk, or R, since other situations will contribute insignificantly to the vari-

ance.

If the distributiondg of geometries is random, the 3-D edge correspondithgwil
be a random line in space, lsawill be a random great circle on the hemisphér&hus
our “second basic assumption” is to replace the integration®ireE(D?) by integration
over the spac8of great circles. This space can be parametrized by the unit normal to the
plane of the great circle, the one which points to the side containing the pélyddre
probability measure of a collection of great circles is then proportional to the area on the

unit sphere occupied by the corresponding normals.

We have seen above that only teiggfor neighboring pairs of regions crossed by the
same edge dP(A;) contribute significantly tcE(Dz). When the hemicube grid is fine, the
number of these pairs is proportional to the total boundary edge lengthApfThus the
effect of this second assumption is to multiply the varidi{B®) by the ratio of the length
of a complete great circle to the sum of the lengths of the great circle arcs bd(#gling
A distribution of samples which is optimal for random great circles will also be optimal

for random polygons. This makes it possible to account for the randomness in the position



and orientation of the polygons, without worrying about the distribution of their sizes. We

will quote our variance values for the single great circle case.

The assumption of random orientation may not be appropriate for architectural simula-
tions, where the edges are preferentially oriented along three perpendicular axes. Random-
ness can be partially restored by rotating the hemicube, randomly around the surface
normal, as suggested by Wallagteal.[10]. This will randomize the edges which are not
parallel to the surface normal, but only the partially randomize edges which are parallel to

it. In the “Future work” section, | suggest how to modify the analysis for this case.

Note that ifV' (o, Aj) is replaced by a function which is linear acRg$he devia-
tions from the value at a region center are symmetric, and cancel out in the integral (7) for
Dy so the main source of variance still comes from projected edges. This makes our anal-
ysis applicable to the linear finite elements in Max and Allison [15], the piecewise linear
cases of the more general finite element formulations in Troutman and Max [16], Zatz
[14], and Gortlert al [17], and to the final light-gathering pass in Cohen and Greenberg
[2]. In the work of Chert al.[18], the final gathering is done once per output pixel, so the

variance results in noise in the final rendering, which can also be reduced by optimal sam-

pling.

In finite element applications, the point collocation method corresponds to the finite-
area-to-differential-area form factoﬂ?sdA_ A which can be found using hemicubes,
while the more popular Galerkin method corresponds to the finite-area-to-finite-area form
factorg~ A-A which involve integrals over four real variables. Troutman and Max [16]
found that the point collocation method converged faster than the Galerkin method, even
when the hemicube sampling was done in software. The 4D integrals for the Galerkin
method are usually done by Gauss integration, but as discussed above, this calculation

may be inaccurate due to the effect of discontinuities. A hybrid integration method could



place hemicubes at the Gauss poa#isof A;, and use 2D Gauss integration only of&er

In general occlusion situationEdA A i€4 function of the position adA;, with lower

order continuity coming only from degenerate situations when edges are parallel or touch
(Paul Heckbert, personal communications), so 2D Gauss integration should perform better
overA;. As shown in Max and Allison [15], the color channels in a hardware pipeline can
be used to help integrate all the piecewise linear basis functions in one pass over a hemic-

ube atdA.

Variance from a central rectangular pixel

We will calculate thé,, for regions on the planEof the top hemicube factangent
to H at the north pol®©, because polygon edges project to straight lineg oather than
to great circles. We will replace the sp&ef great circles by the simpler spa@ef all
oriented lines., randomly positioned in the plarie In the following section, we will
show how to compensate for the resulting distortion in the distribution of random lines.
For now, we will consider only regions close to the pGimf tangency betweehandH,

where this distortion is minimal.

We will start by analyzing the varian€®, contributed by a single rectangular pixel
R whose center i®. The rectangld®,, shown in figure 1, has widtraznd height B,
and is bounded by the edges a, x =- a, y = bandy = - b. The spac€) of lines will be
parametrized by the lengttof the segmen®G from O perpendicular ta, and the angle
8 between this segment and texis. The line(6, I) is oriented so that'(w, Aj) is 1 on
its right side, and 0 on its left. The parametearpositive ifO is to the left of the directed
line L, the case shown in figure 1, and negative otherwise. For now lamitl have uni-

form distributions. Rewriting (8) fde Kk,

Dy = EE&{J{V'(Q), A) =V (0, A)} cosa () dw ép )



At the north pole, cost = 1, and the solid angléw is equivalent to the aredx dy

ThusDyy is well approximated by

2T [*d

E = niZJ'dGJ'dI(D(e,I))Z (10)
0 —o0
where
a b
D(8.1) = [dx[dy{ V' (xy) -V"(0,0)) (11)
-a b

andV" (x,y) is 1 on the right side b{6, I), and 0 on the left.

The spac&of great circles is finite, but the rangd @i (10) is infinite, so the space
is infinite, and the aredd dl cannot be normalized into a probability distribution. We will
fix this later when we correct for the area shrinkage in the mappingQram§, but for

now, note thaD(0, 1) is O whenevel is large enough so that the line does not cross the

rectangleRy.

Note that addingtto 8 and reversing the sign bputsL(8, |) back in the same place
with its orientation reversedince linel is oriented to make the interior B{A) lie to its
right, this replace¥” by 1 -V" and changes the sign b{6, I), but does not change its

square. Similarly, reflecting figure 1 in tHeor Y axis leaves[d(8, 1))? unchanged. Thus

w2 o

Ey = %I de [dI (D (8,1))? .
0 0

so it is sufficient to comput®(6, I) for 6 in the first quadrant, arldoositive, so that the

line L is oriented as in figure 1, aMi(0, 0) = 0. The equation of the lihg®, I) is

e(xy = xcosB+ysinB-| =0 (13)



and with the orientation in figure ¥'(x, y) = 1 if and only ife(x, y) 2 0. The maximum

value ofl giving a non-zer®(0, 1), for 8 in the first quadrant, is at

l,(6) = acosb + bsinb (14)

where the corneB = (a, b) satisfies (13). Fdr> 11(8), the lineL missesRy.

There are two other special cases for the intersection topoldgwith R,. When the

line L passes through the corner (- a, b, | is at

l,(0) = —acosd + bsind (15)

and wherl passes througb= (a, - b, | is at

I;(0) = acosd—bsind (16)

Note that (15) gives a positivg0) only whenb > 63 = taril(a/b), and (16) gives a posi-

tive 13(6) only whenb <65 .

The three “general position” cases for the intersectidnwith R, are shown in fig-
ures 1, 2, and 3, and thef, () ranges are shown in figure 4. The situation in figure 1, or in
the limiting special cases for which the same area formulas hold, occurs when
max(,, I3) <1 <14. In this caseP(8, I) = D4(6, I), the area of the trianglEBF where

V'(x,y) = 1. In figure 1BS = |, - |, EB =BS/ co$, andFB = BS/ sing, so

D, (6,1) = *EBCFB = ECROLS
1T ~ 2cosAsind

Case 2, shown in figure 2, occurs where 83 and 0< | < [5(8) . In this case,
D(6,1) =D4(0, 1), the area of the trapezotABF, with baseAB and average heigtdT.
The distanc®Tis| / siB soUT =0U-OT=b-1|/simg, and



2a (bsinB —1)

D,(6,1) = ABOUT = =B

Case 3, shown in figure 3, occurs wies 65 and 0< | < 13(8). Case 2 can be trans-
formed into case 3 by reflection in the’4iie x = y, which swaps andb, and also swaps
cod and si®, so

_ 2b(acosB 1)
D;(6,1) = oD :

| used Mathematidd to integrate (0, I))2, first inl and then irB, using the different

formulas above for the different regions shown in figure 4. For fixef3 ,

o 1,(8) 1,(8)
[(D@D)2l = [ (Dy(8,1)2dI+ [ (D, (8, 1)) “dl
0 0 1,(6)

_ 4 588 4 5,
=I5 COSZG+ 3a b4cosd 17)

and for@ = 65,

o 1, () 1, (6)
[(@®Nd = [ (D,(8n)dl+ [ (D, (6,1))dl
0 0 1,(6)

_ 4 5080 4 55 (18)
= 15a sin26+3a b3sinB

so that by (12),



_ D4 psSin°e 0 342 []4 500§e 13
=~ nzID15 020 3a b COSGE]?GJ’ I e g 3a b sme%je

g g 8 5 sm263 4 .
02 p5¢ _9 N S B PN TR
2D15b se b 15b s E 3a b slne3
8 8 5 4 cos 8; 4 O
+ =375 _ + 95— 24 752p3 O
15a sme 15 15a sne a b cose

b . a . , . . .
When cosB, = andsin@, = are substituted into this expression, it
° JaZ+p2 ° JaZ+p2
reduces to

64

k= Tem 2{ (a2+b2)5/2 ad— b5}

Variance for a general rectangular pixel

The previous section computed the approximaggyto Dy for a rectangular pixe®,
with center at the north po@. If ithe center is at a general poirg,(yy, 1) on the top face
T of the hemicube, there are two modifications required. First of all, the facton(@ps

dwin (9) is no longer equivalent tix dy.Instead, by a standard formula from [2] or [4],

dx Ody

cos (@) 4o = Ty (19)

We will assume that the pix&, is small enough so that the denominator of (19) can be

evaluated at the pixel centeg,(yp) instead of atx, y).



Our basic assumptions involve a probability distribution on the spatgreat cir-
cles, and our second modification is to account for the Mmwapich takes a lin¢ in the
spaceQ of lines onT to its corresponding great circle$hLetJ(x, v, 6, I) be the Jacobian

“area stretching” determinant for this map. Then in analogy to (9) and (10)

_ F(Xy ¥0)
kk ™~ AT(1+x3+y3)* (20)
where
12T[ co
F(xo, yo) = FZIdGIdI (D (6, |))2J(X0, Yo 6, 1 (21)
0 —o0

andD(0, I) is defined in (11). The factor %Eﬁ in (20) arises because a probability distribu-

tion must integrate to 1, while the solid angle measure for sets of norrSatgagrates to

41t

To computel(x, v, 6, 1), letU(B, I) be the plane through(, I) and (0, 0, 0), and let

N(6, I) be its normal. A differential rectangle @ with sidesd® anddl, and arealA =

do dl is mapped to a differential parallelogranSwith sidesg—';de an(%\ldl , and area
_ (0N g ON
dw = aed9>< i dl‘
o)
_ do _ |ON oN
JOe% 0. = 5% = 36 * a1

To proceed farther, we need a formulaf®, 1) in terms ofx, y,0, andl. The plane

U(b, I) contains the vectdr; = (x + |1 co®, y + | sinB, 1) from (0, 0, 0) to the poir@ in



figure 1, and also the vectdy = (- sirf, co®, 0) in the direction of the arrow anin fig-
ure 1. The right hand rule matches our orientation conventions, so
V., xV

N(8,1) = |Vl><V2|

_ (=cosH, —sinb, xcosh +ysinb +1)
J1+ (xcosB +ysind +1) 2

Then some standard calculus, algebra, and trigopnometry can be used to derive

oON GN 1
a0 "ol 1+(xcose+ysm6+l)2

J(x ¥%8,1) =

We will assume the pixels are small enough so that in the integral (@it be very
small forD(6, |) to be non-zero, and skx, y, 6, I) can be replaced hj(x, y, 8, 0). Once
this is done, the same rotation and reflection symmetries apply as in (12), so, using (17)

and (18),

w2
F (X Yo) = T%J’dGIdI(D(e,I))ZJ(xO,yO, 0,0)
0 0

_ 4a5c:os3esm—29 + 20a2b3sin6
T[2.[ 15(1+ (x,c0s0 +y,Sind) 2)

8 4b5cos26sin®6 + 20a3b?cosh
2 ef 15(1+ (X,C080 +Y,sinB) )
3




For a pixelR of the same shape with centery(,,z;) on a side face of the hemicube,

the formulas in [2] and [4] give

z[dy[dz

cost (0.)) dw = m‘)‘z

SO

__ %Pz
am(L+yg+zp)

kk

Correlation between pixel errors.

So far we have only considered the varialdggfor a single pixeR,. There are corre-
lationsDy, between the errors on pairs of different pi¥glsandR, which also contribute
to the total form factor variance. To analyze these correlations, we again start with the case
that both pixels are near the north poldHpfso that we can integrate with respect to area

on the top hemicube fade

Figure 5 shows two horizontally adjacent pixels, of widdta@d height B, R on the
left, with cented = (-a, 0), andR, on the right, with centel= (a, 0). The origirO = (0, 0)
is at the midpoint of the common sibé of the two pixels. Also shown is the |ih€0, I)
defined as in figure 1. Figures 5 through 9 show the five “general position” cases, which
we will name by these figure numbers. Note that sipde andC lie on a straight line, if
L intersects the interiors of segme®s andNC, the point) must lie abové., as shown in
figure 5. Figures 5 through 9 have the same rotation and reflection symmetries as figure 1,
so we again need only considet 8 < 172 and| > 0. (Note that the reversal of the orienta-

tion of L(B, I) changes the sign of boih andD,, but not their product.)



Figure 10 shows the regions & () space corresponding to these cases, separated by

the curves

mgp(8) =acoso

m1(6) = 2acosO - b sin 6

mo(B) =bsin®

m3(0) =bsin0 - 2a cosO

at which the lind_(8, ), with equatiorl = x cosf +y sin8, passes through the poidtsC,

F, andA respectively. Key values where these curves intersect are also shown:

85 = arctané&/b)

8, = arctan(a/b)

and
65 = arctan(a/b).
Let
0 b
Fp= [dx[dy{ Vv (xy) -V ()}
—2a b
and
2a b

F, = J’de dy{ V' (x,y) =V" (J)}
0 b



wherel = (-a, 0) andJ = (a, 0) are the centers Bf, andR,, respectively, as shown in figure

5. Then for cases 5, 6, andF,is the area of trianglEFG, which works out to be

_ (bsing—1)2
1 2sinBcosh ’

and for cases 8 and B, is the area of trapezoAFGK,

_ 2a(bsinf —acosb —1)

! sin@

Also, for case 5F, is the negative of the area of trian@#IN,

Fo=_ (bsind +1) 2
2 2sinfcosd

for cases 6 and &; is the negative of the area of trapezGidCN,

_ _2a(bsinG—acosh +1)

F, = .
2 sin®

and for cases 7 and B, is the area of trapezokBHG,

_ 2a(bsind + acost —1)

F2 sin@

The corresponding formulas f@x(6, I) = F; F, , the product of the errors on pixdg

andR, for casd, are

_ (bsin@—1) 2 (bsind +1) 2
4sinf0cos’0

D, (6, 1)

_a(bsinb-1I) 2 (bsin@—acosh + 1)

D. (9,1
6(61) Sin20cosh



a(bsin® —1) 2 (bsin® + acoH —1)

D.,(6,1) =
1D sin6cosd ’
2 —

Dg(6,1) = _4a’(bsind —aco—1) (bsin@—acosh +1)

sin%0
and
4a? (bsin® —aco —1) (bsinb + acosh —|

D, (6,1) = 22 ;( )

sin<6
Let

[ee]

G(8) = [D;(8,1)dl.

where | is chosen according to the arrangement of cases shown in figure 1G(@)hsn

m, (8)

[ Dl 0<6<8s

m, (6) m, (6) m, (6)

f D5 (8,1l + [ Dg(®Ndi+ [ Dy(81)dl, 8;<058,,
m, (8) m, (6)

m; (6) m, (6) m, (6)

f Dg(6,1)di+ [ Dg(6,1)dl+ [ Dy(8.1)dl 68,5058
m, (8) m, (8)



m, (6) m, (6) m, (6)
[ Dg(8Ndl+ [ Dg(Bl)dl+ [ D,(81)dl B5<O<T2,
0 M, (6) m, (6)

Note thatDg(6, I) throughDg(8, |), when written with a common denominator
cos6sir’d, all have numerators whose terms are of total degree 4 in the vasdeti8s
bsinG, andl. The functionsny(8) throughmg(8) used as limits of integration are also lin-
ear combinations adco® andbsinf. Integration bydl raises the power dfby 1, so the

functionG(8) has numerator terms of total degree 5 and can be represented as

5
G(0) = Z c,a>~"b"cos’~"Bsin"~20 (22)
n=0

where the coefficients, differ in each of th® ranges listed above. Each of the terms can
be integrated i® in closed form, but the results will not be used here, because they apply
only to pixels very close to the north poleHhfFor a general pair of pixels dhwe must

compute

2
o0 - 8 G (6) do
Kl 4n3(1+x2+y2)4.([ 1+ (xcosh +ysing) 2’

and for a pair of pixels on a side face,

2
5 - 822 G (6) do
ki 4n3(1+y2+22)4£ 1+ (ycosd + zsinB) 2’

The case of two pixels sharing a horizontal edge instead of a vertical one is found from the

case above by reflection in The*4ie x =y, as discussed for figure 3.

The case of two diagonally adjacent pixels is similar. Figure 11 shows two pixels of

width 2a and height B, touching at the origi®. The corresponding error integrals are



0 2b

F, = I de dy{ V (x,y) =V" (1)}
-2a 0
and
2a 0
F, = Ide dy{ V' (x,y) =V" (J)}
0 -2b

wherel = (-a, b andJ = (a, -b). The five “general position” cases are shown as the lines

L1o L3 L1a Lys andL,gin figure 11. Figure 12 shows the regionslj®) space where

each of these cases apply. These regions are separated by the curves

n, (8) = 2bsinb — 2acosH

n,(6) = 2bsind

ns (0) = 2acow

n,(6) = 2acow —2bsinb
ng (0) = bsind —acow

and

ng (0) = acosH —bsind,

defining lines which pass respectively through the pdnts, E, F, l,andJ of figure 11.

These curves intersect at thealuesd, throughs, with

6, = arctan&/3b),



6, = arctan@/2b),

and@s, 6,4, andBs as defined previously. As before, the integFglandF, can be found as
areas of triangles and trapezoids. The pro#ydt, can again be integrated with respect

to | for fixed 0, according to the regions in figure 12 crossed by the vertical |eTaie

result is a separate formuB{0) of the form of (22) for each of the six intervalg B;, 1],

whereBy = 0 and8g = 172. Then

w2
. 4 G (6) do
Kl 4n3(1+x2+y2)4£ 1+ (xcosh +ysinG) 2’

Here there is only a factor of 4 in the numerator, because the reflections antheaxes
are no longer symmetries of figure 11, only their product, 8 d@@tion, is. However, the
integral still extends only tav2, since for/2 < 6 < 11, the lineL (0, I) intersects only one

of the pixelsR, or R, so one of the terms in the prod&gtF, is zero. An analogous for-

mula holds for pixels on the side faces of the hemicube.

One can apply a similar analysis to pairs of pixels which are further apart, but | have
not done so, because the contributions from the correlddigfsr the 8 neighborg, sur-
rounding pixelR, already total less than 1% of the variafgg , and pixels farther apart
will have even less correlation. In addition, if the separation between two pixels becomes
too large, it may no longer be correct to assume that at most one polygon edge crosses
between them, and that it does not have to be extended beyond its endpoints in order to
intersect them. Nevertheless, geometric arguments like the ones above show that for any

pair of nearby pixel&, andR, onT, the error correlatiod,, can be approximated by

0. _
1 o 3 a5~ "bnsin"-2@cos® "B

C.

Dy, = de § mn

Kl 4n3(1+x2+y2)4_z I Z 1+ (Xxcosd + ysing) 2
j=0 ej n=0




wheremis a configuration index depending on the relative position of pigaladR, , X

andy are the coordinates of the point halfway between the pixel centers, and the division

points®; depend only on the ratio afandb. The coefficients;,, arise from integrals of

D(6, 1) with respect td, which were performed symbolically by Mathemaltica

We will assume that the two pixels are close enough together so that the denominators
can be evaluated at the center of piRgl, instead of at the midpoi@ between them.
Then we can group all ternig (but notD,, ) for a fixedk, to get

6.
35 20 2 drnsin'~26cos "8

W, = D, 6 =
K Z ki 4T[3(1+X2+y2)4JZO-(!. nz 1+ (xcosh + ysinb) 2

(23)

wherer =b/a anddj Z imn - Analogous formulas hold for pixels on the side faces of

the hemicube.

If we calculate the total error variance from the hemicube sampling by summing these
termsW, for all pixelsR,, we will neglect error correlations between nearby pixels on
adjacent faces, and include correlations for certain potential neighbors which are actually
beyond the edges of faces. However for increasing hemicube resolution, these “edge

effects” become small.

Face variance as a Riemann integral

Suppose the top fadeof the hemicube is divided intdvBsquare pixels of sidea2=

2b = 1M, so that = 1. Then the sum of (23) over these pixels can be rewritten as



(2a) (2a) 5 d,sin"~26cos’~ "0

M—1 M-1 J 9
D = as de
. ,
op |=z4v| mZ_M16n3(1+x|2+y§n) 4jZO g: nZol+ (%,cosB +y, sind) 2

wherex = H%‘:’ andy,, = %5 If we replace the @ (2a) by Ax Ay this becomes
M-1 M-1
Diop = as z Z e (X, Y,,) AxAy (24)
I=—M m=-M
where
0.
(X9 1 ) Hlde > d;, sin"~26cos*~"@
e = :
X 16113(1+x2+y2)4_z I Z 1+ (xcosh + ysing) 2

j=0 6, n=0

The double sum in (24) is a Riemann sum for a double integral, soM/agproaches

infinity in the limit of fine hemicube subdivision, the sum approaches the integral

1 1
T= IdxjdyDe( XV,
-]

which is independent of the resolution of the hemicube.

The expression(x, y) is too complicated to be integrated analytically, so a sum is still
required to estimate the integral. However, Simpson’s rule can be used, which gives a
more accurate estimate than the Riemann sum (24). Note that because of the symmetry of

the square] can be computed from the integral over a fundamental triangle

1y
T= SIdyIdee( XV,
0 0



requiring fewer terms in the Simpson’s rule sum. Similarly, the contribution from the four

side faces iDgjye= a°S, Where

11
S= 8Idzfdy[f(y, 2
0 0

and

f 22 ) ej”de °  d,sin"~26cos’ "8
v Z) = - .
.2 16183 (1 + y2 + 72) 4j ZO é[ nzol + (ycosB + zsing) 2
J_ =

Optimization

Suppose we have a fixed numbBeof pixels, which are to be distributed over the top
and sides of a hemicube. Even if all the pixels are square, we can use different resolutions
for the top and the sides. So suppose we divide the top faceMriig 2M pixels, with
a = 1/(2M), and each of the four side faces intd[®/ N pixels, witha = 1/(2N). Then

K = 4M2+ 8N2,

Letu = 2M/ /K andv = 2N/./K be real-valued proxies fdrandN, which we will

use to apply calculus to the variance minimization. The constraint on total pixels becomes

u2+2v2 = 1,
and we can write the total variancelbfs

O 20 _ 01,018
EOD O = Dtop+Dsides_ DmDT+D2_|\]DS

1 0T SO

K3/2L,3  \3U-



Lett = v so thatv = t¥2 andu = (1-2)2 Then we must minimize

T ,.S

W(t) = (1_2t)3/2 t3/2

Setting the derivative equal to zero, we get

dw _  3( T S

U_
dat _§T2(1_2t)5/2+t5/2D_ 0.

Solving fort, one finds

. /5
~ (2T) 25+ 25

Using thist and the definitions ai, v,andt, we can find the integer resolutions

M= .J(1-2t)K/2 (25)
and
N = JtK/2, (26)

where the “=" signs imply truncation of the fractional part. With these minimizing

andy, the total variance reduces, after some algebraic manipulation, to
EHDZH = K-3/2(T2/5+ 28/532/5)5/2

3/2

SinceSandT are constant, this is proportionalko®'“. As discussed above, the variance

of the mean oK independent measurements decreases oy asThe improvement in
convergence here comes because the measurements are locally correlated, and the regular

sampling takes advantage of this correlation, in a way that random samples cannot.



We now investigate several ways of improving this optimum if the scan conversion
onto the hemicube can be more flexible. The first is to replace the cube by a rectangular
solid. Because of the four-fold symmetry in the horizontal plane, the horizontal cross-
section will still be a square of side 2, but the vertical hengtgn be different than 1. In
order to apply the previous analysis to the top face, we project it onto the horizontal plane
tangent to the unit sphere, getting a square of half-width/h. LetK, M, N, u, vandt be
as before, except that the side faces aremgwixels high. We can then repeat the above

analysis for square pixels, using

sy
8s3(dyfdxCe( x ¥
el

—
I

and

h 1
SIdzIdny( y 2.
0 0

S,

The reason for the® factor in front of the integral foF;, is that the half-width of each

pixel becomes/(2M). The total pixel count is now
K = 4M2+ 8hN?
so the constraint equationurandv becomes
uZ+2hv2 = 1
and (25) must be replaced by
M = ./(1-2ht)K/2.

The minimum variance is at



2/5
t= i
(2hT,) 2/5+ 2h /5

with value
EHDZH = K-3/2(T2/5+ (2h) 3/582/5)5/2,

The next generalization is to use non-square pixels. Most scan-conversion hardware
can deal with rectangular pixels by adjusting the 4 by 4 viewing projection matrix, as long
as all the rectangles are identical, and are arranged in a lattice. By four-fold symmetry, the
optimal lattice on the top must still be a square one, but on the four sides, the optimal lat-
tice is truly rectangular. Letbe the ratio of the height to the width of the rectangular pix-
els in the four sides. Again take M, N, u, vandt as before, except that the side faces are

now hN/r rectangular pixels high. Then we modify the formulaSoto
h 1

S = [dZ[dyo(y 7 )
0 o0

where, including as in (23),

6. .
20 2 rdg sin'~20cos "0

z
VL) = de )
9(%.21 161 (1 +y2 + 72) 41_20 'er rlZol+ (ycosh + zsing) 2
i

The extra factor of 1/in front of the integral fo§,, arises because tiAa in the Riemann

sum needs to b#N instead of 1. The new constraint equation becomes

u2+ (2h/r)v2 = 1.

The minimum variance is at



35/5
t = '
((2h/1)T,) 25+ (2h/ 1) SIS

with value
U2l _ 321215 3/52/5) 5/2
EOD 0= K (TE">+ (2h/r) 2155g09) >=.

Appendix A describes hemicubes with uneven pixel grid spacing, specified by low
degree polynomials, and Appendix B describes how to modify the standard scan conver-

sion algorithm to accommodate such uneven grids.

Results

The total variance was minimized in each of the cases described above, using an
unconstrained optimizer written by David Gay [19]. It had to estimate the gradient of the
variance by finite differences, since it was impossible to differentiate the variance analyti-
cally with respect to the pixel and hemicube size and shape parameters.The variance
depends on the the scene geometry and the nutndigpixels used, so | will express the
results as a ratio of the optimum variance obtained to the variance from a standard hemic-
ube of sides 2 x 2 x 1, with the same nunibe&f equal square pixels. This base case is

line 1 in table 1, which presents the other cases in the order discussed below.

The first optimization was for a standard 2 x 2 x 1 hemicube with square pixels, but
allowing more smaller pixels on the top than on the sides. The optimal valt® wse in
(25) and (26) is .238126, and the variance ratio is .75809. The next optimization was to
allow the side faces of the hemicube to have height different than 1, but still have square
pixels. In this case the optimal heighof the sides was 1.41647, and the optimuwaas
232992, giving a variance ratio of .68614. Note that the side faces aréNroyhRl pix-



els, whereN is determined from (26). This optimum made the hemicube taller than half a
cube, the opposite distortion to that in Reckeral. [9], whose goal was good early

approximations in progressive radiosity.

If in addition the sides were allowed to have identical rectangular pixels, the optimum
ratior of the height to the width of these rectangles was 1.0959, the hemicubehheight
was 1.42054, the value bivas .255042, and the variance ratio was .68554. Now the side

faces ardaN/r pixels high, and (25) must be modified accordingly.

variance
ratio t r x(u) y(u) Z(V)
11 1.0 0.333333|| 1.0 u u v
2| 0.75809 || 0.238126| 1.0 u u v
3]/ 0.68614 || 0.232992| 1.0 0.70508 || u 1.41647v
40/ 0.68554 || 0.255042|| 1.09590|f 0.70396 || u 1.42054v
5 0.60711 || 0.271831| 1.0 0.56583 || 0.60746u+ || 1.23056v -
0.334100° || 0.39254u° || 0.11911v°
6 || 0.60583 || 0.245522|] 0.85616| 0.55342 || 0.61429u+ || 1.26946v -
0.29327u® || 0.385720% || 0.08839°
7]/ 056897 || 0.270982| 1.0 0.696R8 | 0.76101u- || 1.69337 -
0.15892u° + || 0.17971U2 + || 1.443872 +
0.35680u° || 0.41870u% || 0.86886v°
8] 0.56884 || 0.248993| 0.81477|] 0.62M1 || 0.76554u- || 1.86719 -
0.09508u + || 0.16232u% + || 1.67351V2 +
0.24086u° || 0.39678u° || 1.10017A°
9 062488 || 0.17545 | 1.0 0.953LG || 0.74430u- || 1.37418v -
0.83551u° + || 0.34758U% + || 1.289922 +
1.34289% || 0.60328u° || 0.60044v°

Table 1: Hemicube parameters. The rows are 1) standard hemicube, 2) unequal resolutions on the
top and side, 3) 2x2xhemicube, 4) 2x2xhemicube with rectangular pixels, 5) uneven quadratic
spacing, 6) quadratic spacing with variahbl&) uneven cubic spacing, 8) uneven cubic spacing

with variabler, and 9) uneven cubic spacing optimizing equal contribution to the form factor.

For the case of uneven spacing described in Appendix A, | tried quadratic and cubic

polynomials on the top and the side faces. For example, the cubic polynomials have 7



independent parametees; &, ag, by, by, ¢;, andc,. The sizes of the top is determined by
(28)in Appendix A, and thebz andc; are determined from (29) and (30) respectively,

usingh = 1k. For the top face the optimum polynomial was

x(U) = 0.69628% —0.15892412 + 0.35680183,

and for the side faces, the optimum polynomials were

y(U) = 0.761007 —0.17970:2 + 0.418698:3

and

z(V) = 1.6933% —1.4438%2 + 0.8689163.

The value ot was .270982, and the variance ratio was .56897. Note that (30) assures that
the sides have the correct heigheéven when the range [0, 1] is divided intdl equal

parts.

To allow flexibility in the ratio of the vertical to horizontal pixel counts on the side
faces, suppose that there &t& vertical subdivisions of the interval [0, 1], with the
usual AN subdivisions of thei interval [-1, 1]. Ther becomes an eighth variable in the
minimization. Its optimal value is .814768, and the optimal polynomials are shown on row
8 of table 1. The value dfis .248993, and the variance ratio is .56884, a 43% improve-
ment over the standard hemicube with square pixels, all of the same size. Note that a 31%
improvement, or three quarters of the 43% above, can be achieved just by changing the
shape and relative resolution of the top and sides of the hemicube, which is easy using cur-

rent hardware.

Note also in table 1 that the variance improvements on lines 4, 6, and 8, fronrletting

be different from 1, are all insignificant. Figure 13 shows the hemicubes resulting from the



cases in rows 2, 3, 5, and 7 of table 1. The first column shows the top face, in the size it
would appear when projected onto the plane z = 1. The second column shows a side face.
The last column shows the assembled hemi-solid, with the top face expanded to size 2 x 2.
The number K of pixels allowed was set to 1000. The second row used 940 pixels, and the

other three rows used 996.

Verification

To verify the performance of the proposed hemicube schemes, two independent tests
were performed. These tests are reported in greater detail in Max and Troutman [20],
which also describes a test on a “Cornell Room”. The first used 10,000 random triangles in
each of the cases in figure 13, and computed the form factors within the finite element
radiosity system used to produce figure 6 of [20]. For the standard hemicube, used as ref-
erence for the variance ratios, 40,000 triangles were used. The specified pixelKcounts
were from 25,000 to 50,000 increasing in steps of 5000. The random number generator

was seeded from the clock, so that different triangles were generated for each test.

The second test used 20,000 random triangles for each case, in an independently coded
program for computing form factors only. The specified pixel counts were from 3888 to
1,920,000 in 9 doubling steps, so that the final count corresponded to a 800 x 800 x 400
resolution hemicube. The random number generator was reinitialized for each case and

resolution, so that the same random triangles were used.

Table 2 shows the results of the two tests. The row numbers correspond to those in
table 1. The last two columns give the slopes of the least squares fit lines. In order to get a
single number for the variance ratios reported in the middle two columns, the data for each
case was fit with an enforced slope of -1.5, and the variance ratio reported is the antilog of

the difference in the y-intercepts between the listed and standard cases. The slopes for test



close to those predicted, but a little larger in all cases.

2 are close to the predicted value of -1.5, and the variance ratios for both tests are also

predicted | test1 test 2

variance | variance | variance
type ratio ratio ratio test 1 slope | test 2 slope
1. standard 1.0 1.0 1.0 -1.47268 -1.52282
2. unequal 0.75809 0.78449 0.79526 -1.37623 -1.5119
3. rectangular | 0.68614 0.72077 0.69620 -1.42348 -1.5173
5. quadratic 0.60711 0.66302 0.64671 -1.37450 -1.5005
7. cubic 0.56897 0.64006 0.58415 -1.42543 -1.51604
9. equal FFs 0.62488 0.63435 -1.52964

Table 2. Performance test results. Rows are numbered as in table 1.

One of the anonymous TVCG reviewers requested a comparison with the “equal con-
tribution to the form factor” method of Sillion and Puech [8]. To do this, | minimized the
mean square deviation of the pixel form factors from the mean pixel form factor, using
cubic polynomial spacing as on line 7 of table 1. The extra degree of freemlvime 8,
affecting the pixel shape on the side faces, has no meaning here, since the form factor for a
small region depends only on its size, and not on its shape. By the methods described
above, the summed square deviation was interpreted as a Riemann integral, accurately
approximated by Simpson’s rule, and minimized with respect to the independent cubic

polynomial coefficients.

The resulting cubic polynomials are given in row 9 of table 1. The optimal hemicube
was short and wide, as shown in figure 14, with a héighbnly 0.68471, andtavalue of
0.17545. The predicted improvement was 37.5%, not as good as the 43% in lines 7 and 8.
This inferior performance for the same degrees of freedom verifies that the optimization

criterion used in this paper gives better performance than the “equal contribution to the



form factor” criterion. However the larger negative slope in the last column means that

this method caught up to the one in row 7 at high hemicube resolution.

Future work

The “second basic assumption,” about randomness of edges, does not apply to archi-
tectural scenes, where edges and surface normals are directed preferentially adong the
andz axes. It is then essential to rotate the hemicube around its “vertical” axis, in order to
avoid positive error correlation in whole rows and columns of pixels along projected

edges. Once this is done, the two families of “horizontal” edges become randomized.

The vertical edges parallel to the normal remain vertical, with their projection planes
all passing through the north paleof the hemicube. On the top face of the hemicube,
such edges project to lines radiating fr@mTherefore they result in linég6, I) crossing
a pixel at X, y) with 8 = tarit (y/X). We already know how to compute the variance from
such lines, so we can just skip the step of integrating@werget a special variance for
them. Similarly, their projections on the side faces are all vertical, so it is easy to get a spe-
cial variance for the sides, which must now include the correlation between distant pixels
in the column containing the edge, leading to a large positive correl&fiam equation
(23). Then we can use a weighted sum of the usual and special variances, to account for
the proportion of edges parallel to the normal. For example, if all object edges are axis-

aligned, an expected 1/3 of them will be vertical.

If this combined variance were minimized, an optimal hemicube could be designed for
this special distribution of geometries. | suspect it would have a wider top, and shorter
sides with higher horizontal resolution, corresponding tol1 andr > 1 in the notation
here, in order to minimize the large error correlation discussed above. It would be better to

use a rotated coordinate grid on the side faces, to break up this correlation.



Various authors, for example Beran-Koehn and Pavicic [21], have proposed using
faces tilted at different angles, and perhaps a different number of them. It should also be

possible to optimize over face orientation angles as well as face grids.

Peter Shirley has suggested that for shooting methods of progressive radiosity, the
variance in radiosity from one shot is proportional to the form factor variance times the
“unshot power”, so one can also use this analysis to dynamically change the Kuofber
total samples based on the power to be shot. More generally, for ray traced samples, there
need be no pattern compatible with scan-conversion, so all the sample directions could be
independent parameters to optimize. However, this could result in a huge number of vari-
ables. In addition, the region corresponding to a ray would become the Voronois spherical
polygon of directions closer to that ray than to any other, which would greatly complicate

the geometrical analysis.

Dippe and Wold [22] propose using hexagonal grids, where each pixel is surrounded
by six neighbors instead of four. Uniform hexagonal lattices are compatible with scan-
conversion hardware, using a shearing viewing transformation to take them to a standard
square lattice. | tested hexagonal versions of each of the cases in table 2, using the same
parameters as in table 1, and the same 20,000 triangles described in test 2 above, and
found no improvement in the variance. Hexagonal grids may be superior for image recon-
struction from samples, as suggested by their fourier transforms, but do not seem to be
better for estimating form factors. The mathematical analysis in this paper could be

repeated for hexagonal grids, to help resolve this question.
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Appendix A: Uneven grids

A final generalization is to allow unevenly spaced pixels, which are impossible for
most scan-conversion hardware. However, if rectangular pixels are arranged in straight

rectilinear rows and columns, Appendix B shows how to modify software scan-conversion



routines to deal with uneven row and column spacing, while still taking advantage of area

coherence. (Presumably microcode or hardware could also be so modified.)

In order to define the uneven spacing by a few parameters which are independent of
the resolution, we use polynomials of degdeg so that the parameters are the coeffi-
cients. Suppose andv are variables which range from -1 to 1, and are to be divided
evenly, so that, for examplg = (| + .5)M. On the top face, by symmetry, the optimal

spacing ik andy will be the same, so they are defined by identical polynomials

deg
x(u) = z a,u"
n=1

and

deg
y(v) = > av,
n=1

for positive u and v, extended for negativel and v to become odd functions,e.,
X(-u) = - X(u). The pixel with index|( m) extends irx from x(I/M) to x((I+1)/M), so it has
width approximatelyAx = X'((I+.5)M)/M and heightAy = y'((m+.5)M)/M, with the

primes denoting differentiation with respecttor v. Then the formula foby,, becomes

L M-t M-l
Diop = VE Z Z e(u,Vv,) AuAv (27)
|=—Mm=-M
where
3 8 S 5—ny/ n inn—2 -n
X' (u v) "d._sin"~26cos’ "0
e(uy = — 12 =3 [y (u)>""" (v) "djn cos
16me (1 +x(u)4+y(v)2) %08 no 1+ (x(u) cosB+y(Vv)sinb)
J

In the limit for largeM, the Riemann sum (27) approaches



1 1

T=IdvIduDe(u§r

-1 -1

1 v

8J’dvfduDe( Uy
0 0

as before. Note that the half-widdlof the top face is now

deg

S = Zl% : (28)

A similar calculation holds for the side faces, but now there is no symmstianiciz

so there are two different polynomials
deg
y(u = Z b,u"
n=1
and
deg
z(v) = Z c V.
n=1
Of the deg coefficients in each of these two polynomials, aidyg - 1 are independent

parameters to optimize, becay$e) = 1, so

deg
Y by =1 (29)
n=1

andz(1) =h = 15k, the height of the side faces, so
deg

Y

n=1

nlikE

(30)



Appendix B: Scan conversion for uneven pixel spacing

To use the polynomials, the usual scan conversion algorithm must be modified for the
uneven pixel spacing. For one face of the hemicube(i)eandy(j) be the tabulated col-
umn and row spacing for the pixel centers, and also takbkéde= x(i+1) - x(i) andAy(i)
=y(i+1) -y(i). Subroutines are required for calculatfingti  (X) = min{i | x(i) = x} and
firstj (y) = min{j | y(j) = y}. For quadratic polynomials, they can be implemented using
the quadratic formula. For more general spacing, estifmate  from a table for the

inverse function ok(i), and then verify and possibly adjust it using the table(ipr

Place the edges of the polygon in y-buckets, basédsgn  of their minimum end-

pointy. Then simplified pseudo-code for scan conversion in incregssg

For j =0 to jmax do
Insert edges from y-bucket(j) into x-sorted list
While x-sorted list is non-empty
Remove a pair of edges (edgel,edger)
dz = (edger.z - edgel.z) / (edger.x - edgel.x)
il = firsti(edgel.x)
ir = firsti(edger.x)
z = (il - edgel.x)*dz
Fori=iltoir-1do
If z is closer than zbuffer(i,))
zbuffer(i,j) = z
itembuffer(i,j) = polygonID
z=z+dz* AXx(i)
For all edges in x-sorted list
If edge ends on current scan line, remove it

else update edge.x and edge.z using Ay()).



Compared to the standard algorithm, the innermost loop requires an extra table access

for Ax(i), and one extra multiplication yx(i).

Figure Captions

Fig. 1: Geometry when max(l3) < I <1;.

Fig. 2: Geometry whefi = 85 and 0< | < 15(0).
Fig. 3: Geometry whefi < 85 and 0< | < 15(0).
Fig. 4: The @, 1) ranges for cases 1, 2, and 3.
Fig. 5: Case 5.

Fig. 6: Case 6.

Fig. 7: Case 7.

Fig 8: Case 8.

Fig 9: Case 9.

Fig. 10: The @, I) ranges for cases 5 through 9.
Fig. 11: Lines in cases 12 through 16.

Fig. 12: The @, I) ranges for cases 12 through 16.

Fig. 13: Grids on four kinds of optimized hemicubes. The rows are: 1) unequal resolutions
on the top and side, 2) 2x2xh hemicube, 3) uneven quadratic spacing, 4) uneven cubic
spacing.

Fig. 14: Grid on hemicube making pixel form factors as equal as possible.
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Fig. 2: Geometry whefi = 65 and 0< | < 15(0).
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Fig. 3: Geometry whefi < 65 and 0< | < 15(0).
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Fig. 5: Case 5.



Fig. 6: Case 6.



Fig. 7: Case 7.
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Fig. 10: The @, I) ranges for cases 5 through 9.
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Fig. 11: Lines in cases 12 through 16.
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Fig. 14: Grid on hemicube making pixel form factors as equal as possible.



